使用 NI TestStand、LabVIEW 與 PXI 開發(fā)植入式助聽器測(cè)試系統(tǒng)
概述:使用 NI LabVIEW、PXI 電腦式儀器與 NI TestStand,建立一套自動(dòng)化測(cè)試系統(tǒng),能以 70% 的開發(fā)時(shí)間提供更多更靈活的功能。
我們針對(duì)內(nèi)部研發(fā)使用了新的 PXI 架構(gòu)功能測(cè)試系統(tǒng),從電路板到組裝完成的產(chǎn)品,測(cè)試了 8 種不同的應(yīng)用。我們也使用這套系統(tǒng)在公司內(nèi)部以及不同的代工廠中進(jìn)行生產(chǎn)測(cè)試。系統(tǒng)需要執(zhí)行眾多的動(dòng)作,包括捕捉、儲(chǔ)存與分析 5 MHz 信號(hào)的波形,將電力與資料穿越皮膚,傳送到植入物中。我們使用聲音測(cè)量、電壓參數(shù)測(cè)量、在不同負(fù)載情況下的電流測(cè)量,同時(shí)通過數(shù)字 I / O及 GPIB與外部設(shè)備溝通。我們使用 USB 通訊設(shè)備來控制定制電路板上的繼電器、開關(guān)與其他的硬件。系統(tǒng)也能夠準(zhǔn)確調(diào)整共振電路并測(cè)試 I2C 通訊。系統(tǒng)會(huì)自動(dòng)生成測(cè)試報(bào)告,同時(shí)通過網(wǎng)絡(luò)進(jìn)行存貯,供日后統(tǒng)計(jì)分析之用。
NI TestStand 成果斐然
新的功能測(cè)試系統(tǒng)協(xié)助我們?cè)诰o迫的時(shí)間壓力下完成工作,將新產(chǎn)品的設(shè)計(jì)從概念階段帶入制造階段。NI TestStand 為我們的 LabVIEW 測(cè)試模塊制造了一個(gè)模塊化、可重復(fù)使用的測(cè)試架構(gòu),NI TestStand 對(duì)我們來說非常實(shí)用。從的角度來看,我們現(xiàn)在可以在的短時(shí)間內(nèi)就開發(fā)完成測(cè)試系統(tǒng),因?yàn)榕c軟硬件開發(fā)有關(guān)的大部分風(fēng)險(xiǎn)都被移除了。我們初期的訓(xùn)練投資成本也因?yàn)殚_發(fā)這個(gè)的時(shí)間縮短,而且收回了成本。在未來的開發(fā)中,因?yàn)槲覀兊墓こ處熞呀?jīng)習(xí)慣使用這些工具,所以我們預(yù)期開發(fā)的時(shí)間會(huì)縮短 30 %。
擷取的資料暫時(shí)儲(chǔ)存在CompactRIO 的內(nèi)部快閃硬碟中,然后透過無線連結(jié)自動(dòng)下載到主要伺服器中,資料在主要伺服器中處理、與更多復(fù)雜的警報(bào)參數(shù)比較,然后儲(chǔ)存在資料庫中。如果無法無線連結(jié)到伺服器時(shí),使用者可以透過短程、點(diǎn)對(duì)點(diǎn)的無線連結(jié)(使用者靠近機(jī)器鏟以建立連結(jié)) 連上并手動(dòng)下載資料;接上乙太網(wǎng)路連接線,或是在CompactRIO的USB 插槽上插入隨身碟,資料便會(huì)自動(dòng)上傳。<0}
資料一旦處理儲(chǔ)存好了,就可以供下列之用:使用者視覺化、分析、手動(dòng)處理,以及在伺服器上進(jìn)行趨勢(shì)管理,或是有網(wǎng)路可存取資料庫的電腦,也可進(jìn)行趨勢(shì)管理。所有的組態(tài)、資料移轉(zhuǎn)、處理、視覺化與分析軟體都充分內(nèi)建在LabVIEW 里。
CompactRIO模塊
渦輪增壓器性能中重要的變量包含溫度、壓力和轉(zhuǎn)速。系統(tǒng)組件包含多個(gè)NI C系列模塊,包括NI 9217 RTD模擬輸入模塊測(cè)量電阻溫度傳感器(RTD)溫度、NI 9211熱電偶輸入模塊測(cè)量熱電偶溫度、NI 9203數(shù)據(jù)采集模塊測(cè)量壓力和電流、NI 9423漏極數(shù)字輸入模塊測(cè)量轉(zhuǎn)速。此外,還采用了NI 9265同步更新模擬輸出模塊作為系統(tǒng)和模擬輸出值的外部接口,NI 9425漏極數(shù)字輸入模塊和NI 9476源數(shù)字輸出模塊用于數(shù)字I/O值。檢測(cè)系統(tǒng)由系統(tǒng)操作員通過用戶界面進(jìn)行控制。監(jiān)視外部系統(tǒng)使得用戶可以控制和管理整個(gè)系統(tǒng)。
結(jié)論
渦輪增壓器是車輛引擎的重要部分,其性能直接影響整個(gè)引擎的性能。對(duì)渦輪增壓器性能進(jìn)行適當(dāng)?shù)臏y(cè)試是確保終產(chǎn)品質(zhì)量的關(guān)鍵步驟。以前的PLC系統(tǒng)無法提供所需的精度。使用基于CompactRIO的全新檢測(cè)系統(tǒng)替換PLC系統(tǒng)節(jié)省了空間,并且提供了更高的精度、更高的分辨率和更好的性能。此外,由于系統(tǒng)開發(fā)員熟悉CompactRIO的開發(fā)方法,可以在短時(shí)間內(nèi)讓系統(tǒng)開始運(yùn)行,這樣節(jié)省了時(shí)間和開發(fā)資源。
使用LabVIEW 與DAQ 監(jiān)控人體于動(dòng)態(tài)平臺(tái)上的擺動(dòng)
概述:使用NI LabVIEW軟體搭配NI資料擷取(DAQ)硬體建構(gòu)平臺(tái),其表面具備122組應(yīng)力感測(cè)電阻器(FSR)并能以200 Hz進(jìn)行取樣,以量測(cè)人體擺動(dòng)與平衡的控制情形。
人體即使在直立時(shí),亦需隨時(shí)保持著穩(wěn)定性。人體整合多種機(jī)制,才能避免身體在靜、動(dòng)態(tài)的條件下跌倒。測(cè)力板(Force platform) 與Stabilogram 均為量測(cè)、量化人體平衡度的標(biāo)準(zhǔn)。另根據(jù)時(shí)間概念而搜集壓力中心(COP),以呈現(xiàn)姿勢(shì)控制的結(jié)果。基本上是以表面支撐人體中心,再垂直投射相關(guān)應(yīng)力。主機(jī)電腦將根據(jù)FSR 的訊號(hào)而執(zhí)行一系列的計(jì)算作業(yè),以取得COP (如圖1)。
圖1. 負(fù)責(zé)計(jì)算人體足部擺動(dòng)的程式圖區(qū)塊
大多數(shù)的姿勢(shì)與平衡計(jì)量技術(shù),均是主動(dòng)操作姿勢(shì)或平衡狀態(tài),再計(jì)算出人體的反應(yīng)。在此系統(tǒng)中,我們是讓人體于不穩(wěn)定的支撐表面上保持平衡,達(dá)到自我反應(yīng)的效果。若讓人體站在可移動(dòng)的支撐表面上,亦可達(dá)到相同的變數(shù)。針對(duì)任何測(cè)試點(diǎn),我們的平臺(tái)可達(dá)到不同方向的平衡紊亂(如圖2)。
在銜接儀器之后,此平臺(tái)可隨時(shí)追蹤人體COP 的移動(dòng),再顯示各種狀態(tài)下的人體穩(wěn)定程度。此時(shí)如BOSU Balance Trainer 的動(dòng)態(tài)表面就極其重要,可完整補(bǔ)償姿勢(shì)控制器統(tǒng),而模擬動(dòng)態(tài)條件。與僅能模擬靜態(tài)條件的靜態(tài)平臺(tái)相較,動(dòng)態(tài)表面更能呈現(xiàn)病理學(xué)方面的問題。
儀器控制
此堅(jiān)固平臺(tái)的直徑為635 mm,非平面的圓頂直到動(dòng)態(tài)平臺(tái)之處均為柔軟材質(zhì)(如圖2)。另有薄薄一層FSR 排列為陣列,固定于平臺(tái)之上。我們另于平臺(tái)之上安裝感測(cè)器,以捕捉不同的站立姿勢(shì),并達(dá)到更大的儀控面積(如圖2)。此系統(tǒng)好能盡量減少各種限制。
每次進(jìn)行EO 實(shí)驗(yàn),COP 明顯均集中在同一區(qū)域。但若進(jìn)入EC 實(shí)驗(yàn),受測(cè)人員的COP 分布就會(huì)產(chǎn)生的變化。結(jié)果顯示,所有受測(cè)人員若要在不平衡的表面上達(dá)到平衡,將極度依賴自己生理上的本體感受器(Proprioceptor) 告知大腦目前狀態(tài),也解釋了COP 分配區(qū)域大幅增多的原因。
一項(xiàng)對(duì)EC 實(shí)驗(yàn)的有趣觀察指出,若受測(cè)人員對(duì)生活形態(tài)抱持輕微的積極態(tài)度,則搖擺的程度較大;若對(duì)生活形態(tài)抱持適當(dāng)?shù)姆e極態(tài)度,其搖擺程度亦較小。不同的生活形態(tài)亦反應(yīng)出COP 的分配范圍。與適當(dāng)積極態(tài)度的受測(cè)人員相較,較不積極的人其COP 分配范圍亦較大。
若受測(cè)人員已熟悉了Balance Trainer 動(dòng)態(tài)平臺(tái),亦將更能控制COP 的分配范圍,亦能進(jìn)一步控制自己的本體感受器。在實(shí)際擷取資料之前,這些受測(cè)人員已經(jīng)實(shí)際使用動(dòng)態(tài)平臺(tái)達(dá)7 天。
結(jié)論
總的來說,我們用LabVIEW 與DAQ 建構(gòu)動(dòng)態(tài)平圖,可了解人體在不穩(wěn)定表面上的平衡狀態(tài)。儀控式的動(dòng)態(tài)平臺(tái)顯示了下列特性:
? 測(cè)得受測(cè)人員的姿勢(shì)控制與擺動(dòng)情形若受測(cè)人員的COP分配范圍較大,也耗上更多力氣才能達(dá)到平衡
? 受測(cè)人員若對(duì)生活抱持積極的態(tài)度,也展現(xiàn)了較佳的姿勢(shì)控制能力
? 在切斷視覺之后,人體會(huì)立刻切換為本體感受器,通知身體是否在特定方向的擺動(dòng)幅度過大
? 受測(cè)人員在熟悉了平臺(tái)之后,亦將縮小其COP分配范圍綜合以上結(jié)論,受測(cè)人員只要能控制自己的本體感受器,就越能在非平衡的表面上讓自己保持平衡。
使用LabVIEW 與NI CompactDAQ 測(cè)試小型牽引機(jī)的噪音與振動(dòng)
概述:使用LabVIEW and NI CompactDAQ模組架構(gòu)的可攜式資料擷取系統(tǒng)記錄測(cè)試參數(shù)并且根據(jù)受測(cè)的單元與組態(tài)產(chǎn)生報(bào)告。
我們選擇LabVIEW 架構(gòu)的可攜式DAQ 系統(tǒng),且NI CompactDAQ 模組可輕松攜帶至戶外測(cè)試場(chǎng)地。系統(tǒng)將記錄測(cè)試參數(shù),并根據(jù)受測(cè)單元與組態(tài)產(chǎn)生報(bào)告。另外,我們也可重新設(shè)定系統(tǒng),以用于如振動(dòng)量測(cè)的其他應(yīng)用。
LabVIEW 圖形化程式設(shè)計(jì)的特性,讓我們可輕松學(xué)習(xí),且軟體亦可無限制客制化。因?yàn)槿绱?,我們功能以NI 軟體工程師撰寫的程式迅速上手,再針對(duì)自己的需求客制化其輸入與輸出,針對(duì)各個(gè)特定測(cè)試產(chǎn)生所需的報(bào)表。
牽引機(jī)噪音滿足多項(xiàng)排放標(biāo)準(zhǔn),而為保護(hù)使用者所訂定的引擎噪音也有多種規(guī)范。售往歐洲的牽引機(jī),先通過完整的測(cè)試,除了表明該設(shè)備已符合特定的歐洲標(biāo)準(zhǔn),并需標(biāo)示其他測(cè)試中的聲音功率強(qiáng)度。這些規(guī)范可避免機(jī)器損害使用者的聽力,且若人體長期暴露于高噪音與高振動(dòng)的環(huán)境中,往往會(huì)對(duì)身體造成不良的影響。
聲音功率量測(cè)
適用于聲音功率的LabVIEW 參考函式庫VI,加上NI Sound and Vibration Measurement Suite,可讓我們按照ISO-3744 的標(biāo)準(zhǔn),透過聲源周圍的麥克風(fēng)陣列,而計(jì)算出聲音功率。聲音功率代表由聲源所發(fā)出的聲音能量強(qiáng)度,并可用于大多數(shù)的環(huán)境噪音測(cè)試作業(yè)。在受測(cè)聲源周圍,排列出既定幾何圖案的麥克風(fēng)陣列,即可進(jìn)行量測(cè)作業(yè)。我們將麥克風(fēng)所測(cè)得的聲壓強(qiáng)度(dB ref 20 μPa) 加以平均,隨即得出聲音功率強(qiáng)度(dB ref 1 pW)。
此標(biāo)準(zhǔn)另說明麥克風(fēng)幾何形式的大小與形狀,還有修正背景噪音的方式。在計(jì)算總聲音功率強(qiáng)度之前,我們平均表面區(qū)域的聲壓強(qiáng)度,以獲得表面的平均分?jǐn)?shù)倍頻頻譜。在得出表面的平均分?jǐn)?shù)(Octave) 頻譜之后,即可測(cè)定全部的聲音功率強(qiáng)度。聲音強(qiáng)度的量測(cè)結(jié)果,可透過各個(gè)頻帶(Band) 中的聲音強(qiáng)度,呈現(xiàn)為總強(qiáng)度或分?jǐn)?shù)倍頻頻譜。我們使用內(nèi)建的參照函式庫VI,并由NI 工程師協(xié)助使用LabVIEW,客制化聲音功率的量測(cè)程式。
測(cè)試場(chǎng)地
我們于草地上建造半徑13 公尺的戶外水泥測(cè)試地。每6 個(gè)麥克風(fēng)為1 組陣列,并安裝于三腳架上,且其中2 組三腳架約為518 公分(17 英尺) 高。為了設(shè)置測(cè)試作業(yè),我們使用自己設(shè)計(jì)的容器安裝并保護(hù)的腳架、連接線、麥克風(fēng)、筆記型電腦,與測(cè)試小桌。我們共設(shè)置6 組麥克風(fēng)腳架,并有連接線將各組麥克風(fēng)連至DAQ 機(jī)箱。完成參考量測(cè)以校準(zhǔn)系統(tǒng)之后,隨即開始測(cè)試。
使用LabVIEW測(cè)量內(nèi)燃機(jī)氣缸壓力
概述:基于LabVIEW軟件控制的DAQ板卡,開發(fā)出OPTIMIZER——一款靈活、經(jīng)濟(jì)的基于PC的氣缸壓力測(cè)量分析系統(tǒng)。
背景
內(nèi)燃機(jī)的性能,取決于許多因素。對(duì)于給定壓縮比的情況,佳馬力和發(fā)動(dòng)機(jī)扭矩會(huì)出現(xiàn)在以下情況:
? 每個(gè)氣缸的進(jìn)氣口和進(jìn)氣閥的進(jìn)氣量均達(dá)到大
? 燃料/空氣處于適當(dāng)比例
? 燃料和空氣充分混合
? 調(diào)整點(diǎn)火提前量,避免初始爆震
由于是燃料/空氣混合物的燃燒產(chǎn)生的壓力產(chǎn)生了發(fā)動(dòng)機(jī)的扭矩和動(dòng)力,所以在發(fā)動(dòng)機(jī)研發(fā)中重要的檢查參數(shù)就是在壓縮和做功沖程中的氣缸壓力大小及其定時(shí)。進(jìn)氣歧管的臺(tái)架測(cè)試是在恒流情況下記錄一定壓降下的氣流情況。但當(dāng)安裝在發(fā)動(dòng)機(jī)上后,進(jìn)氣歧管的氣流就變成了受活塞運(yùn)動(dòng)、進(jìn)氣閥面積、氣閥定時(shí)和重疊時(shí)間以及流道形狀影響的非恒流過程。這些參數(shù)的共同作用,往往會(huì)導(dǎo)致多缸發(fā)動(dòng)機(jī)不同氣缸進(jìn)氣差異。
優(yōu)化發(fā)動(dòng)機(jī)性能的步就是設(shè)計(jì)進(jìn)氣歧管和氣閥系以大限度的給每一個(gè)氣缸提供等量空氣。對(duì)于給定的壓縮比和進(jìn)氣口溫度,操作者可以通過測(cè)量點(diǎn)火之前壓縮沖程中的氣缸壓力來獲得進(jìn)氣信息。因?yàn)橛蜌饣旌衔锏娜紵且粋€(gè)復(fù)雜的反應(yīng)過程,牽涉到很多氣缸的幾何因素以及其它因素,如油氣混合情況、汽油辛烷值、燃料當(dāng)量比、發(fā)動(dòng)機(jī)溫度、空氣溫度和濕度,以及點(diǎn)火時(shí)間等—— 調(diào)整這些參數(shù),以獲得佳的性能,將是一個(gè)相當(dāng)大的挑戰(zhàn)。
通過觀察氣缸壓力測(cè)量值以及峰值壓力相對(duì)活塞頂死中心(Top-dead-center, TDC)的位置,發(fā)動(dòng)機(jī)技術(shù)人員可以迅速將發(fā)動(dòng)機(jī)調(diào)校到佳性能。由燃燒質(zhì)量分?jǐn)?shù)可見,對(duì)于大多數(shù)傳統(tǒng)發(fā)動(dòng)機(jī)而言,如果峰值壓力出現(xiàn)在TDC之后12到15度,并且燃燒發(fā)生在TDC附近的等容階段時(shí),發(fā)動(dòng)機(jī)將表現(xiàn)出佳性能。但在給定壓縮比和燃油辛烷值情況下,為了達(dá)到佳性能所采取的點(diǎn)火提前可能會(huì)因?yàn)閲?yán)重的火花爆擊現(xiàn)象而導(dǎo)致氣閥過熱。因此,在性能優(yōu)化過程中,發(fā)動(dòng)機(jī)技術(shù)人員需要檢測(cè)TDC之后的10和40度之間火花爆擊的氣缸壓力。如果檢測(cè)到爆震,點(diǎn)火提前取消,以避免活塞受損。
使用LabVIEW和PXI定位飛行過程中飛機(jī)的噪聲源
概述:基于NI LabVIEW軟件搭建一個(gè)應(yīng)用程序,并使用NI PXI硬件從布置在跑道上的相位麥克風(fēng)陣列采集數(shù)據(jù)。
研究客機(jī)上的噪聲源
為了能開發(fā)出更為安靜的客機(jī),我們定位所有的噪聲源,以加強(qiáng)我們對(duì)噪音生成原理的認(rèn)識(shí)。在開發(fā)一架飛機(jī)時(shí),我們可以通過數(shù)值分析和模型測(cè)試預(yù)測(cè)噪音等級(jí)。然而,實(shí)際飛機(jī)噪音的屬性和特性只能在實(shí)際飛行測(cè)試中才能獲得。利用聲音波束成形技術(shù)來定位噪音源是一種有效可行的方法。波束成形是一種使用定位噪聲源的方法,同時(shí)能獲得噪聲源的振幅。雖然我們?cè)贘AXA項(xiàng)目上小型模型飛機(jī)的風(fēng)洞測(cè)試和飛行測(cè)試中已經(jīng)發(fā)展并改進(jìn)了這項(xiàng)技術(shù),但還未曾將這項(xiàng)技術(shù)應(yīng)用于實(shí)際飛行的飛機(jī)中。2009年,我們擁有了一架小型Mitsubishi MU-300 Diamond商務(wù)機(jī)。2010年,我們開始在跑道上設(shè)置了相位麥克風(fēng)陣列,通過噪聲源定位測(cè)量來驗(yàn)證我們現(xiàn)有的技術(shù),并找到可以提高的空間。
相位麥克風(fēng)陣列的測(cè)量
相位陣列包含了許多麥克風(fēng),分布在一個(gè)大直徑的范圍上。利用噪聲源的聲波到達(dá)每個(gè)麥克風(fēng)時(shí)間的微小差別,我們可以估算出每個(gè)噪聲源的位置和強(qiáng)度。在這個(gè)測(cè)試中,我們?cè)O(shè)計(jì)了相位陣列來辨識(shí)飛行于120米高度的飛機(jī)上兩個(gè)相距4米的1kHz音頻信號(hào)。這個(gè)相控陣列包含了99個(gè)麥克風(fēng),分布在一個(gè)直徑30米的圓形區(qū)域上。
飛行中的噪聲源定位測(cè)試包括飛機(jī)發(fā)動(dòng)機(jī)狀態(tài); 聲覺測(cè)量,以及飛機(jī)飛過相位陣列時(shí)的位置、高度和速度。因?yàn)轱w機(jī)產(chǎn)生的噪音在傳輸?shù)降孛纣溈孙L(fēng)的過程中會(huì)被大氣削弱,因此我們還需要記錄氣象數(shù)據(jù),例如風(fēng)向、速度、溫度和濕度。
13691203761