鉑銠絲回收,報(bào)廢核醫(yī)學(xué)設(shè)備中鉑銠的回收規(guī)范
處理含放射性同位素(如Pt-193)廢料的特殊要求:
輻射監(jiān)測(cè):
γ能譜儀實(shí)時(shí)監(jiān)控(報(bào)警閾值1μSv/h)
表面污染控制(<0.4Bq/cm2)
去污工藝:
超聲波-檸檬酸聯(lián)合清洗(去污因子>100)
超臨界CO?萃取殘留放射性核素
廢物處置:
固化體符合GB14500-2023標(biāo)準(zhǔn)
法國(guó)Orano醫(yī)療的回收線年處理能力10噸,獲IAEA技術(shù)安全認(rèn)證。
鉑銠絲回收,報(bào)廢石化催化劑中鉑銠的干法回收技術(shù)
針對(duì)含碳沉積的石化催化劑,開(kāi)發(fā)無(wú)廢水產(chǎn)生的干法工藝:
流化床焙燒:
溫度600°C,通入5%O?/N?控制燃燒速率
集成余熱鍋爐回收能量(產(chǎn)生0.8MPa蒸汽)
鋁熱還原:
與Fe?O?/Al粉(比例1:0.3:0.2)混合
引發(fā)反應(yīng)后自蔓延溫度達(dá)2200°C,使γ-Al?O?載體與鉑銠分離
電磁分選:
交變磁場(chǎng)(50Hz,0.5T)分離磁性Fe-Al合金與非磁性鉑銠
沙特阿美公司采用該工藝后:
廢水排放降為零;
鉑回收率從濕法92%提升至96%;
處理成本降低40%。
鉑銠絲回收,深共晶溶劑(DES)在鉑銠浸出中的突破
新型綠色溶劑替代王水浸出鉑銠:
溶劑配方:
氯化膽堿-尿素(ChCl-Urea,摩爾比1:2)
添加0.5M硫脲作為配位劑
操作條件:
溫度120°C
固液比1:15
浸出時(shí)間8小時(shí)
性能對(duì)比:
指標(biāo) DES體系 王水體系
Pt浸出率 99.1% 99.3%
Rh浸出率 97.8% 98.2%
酸耗量 0kg 150kg/t
廢氣排放 無(wú) NOx等
英國(guó)Leeds大學(xué)的生命周期評(píng)估顯示,DES技術(shù)使浸出過(guò)程碳足跡降低92%。
鉑銠絲回收,激光誘導(dǎo)擊穿光譜(LIBS)在線檢測(cè)系統(tǒng)
激光誘導(dǎo)擊穿光譜(LIBS)技術(shù)為鉑銠絲回收提供了實(shí)時(shí)成分分析解決方案。其原理是通過(guò)脈沖激光(波長(zhǎng)1064nm,能量100mJ)激發(fā)材料表面等離子體,通過(guò)特征光譜線(Pt:265.9nm, Rh:343.5nm)定量分析。美國(guó)TSI公司開(kāi)發(fā)的LIBS-5000系統(tǒng),集成機(jī)器人采樣臂,可在傳送帶(速度2m/s)上實(shí)現(xiàn)每秒20次的快速檢測(cè),檢測(cè)限達(dá)50ppm(《Applied Spectroscopy》2022)。
關(guān)鍵突破:
多變量校準(zhǔn)模型:采用偏小二乘回歸(PLSR)算法,將Rh含量預(yù)測(cè)誤差從±3%降至±0.8%;
自適應(yīng)聚焦系統(tǒng):自動(dòng)調(diào)節(jié)激光焦距以適應(yīng)不同形狀廢料,確保數(shù)據(jù)穩(wěn)定性;
云數(shù)據(jù)庫(kù)比對(duì):內(nèi)置3000種合金光譜庫(kù),可自動(dòng)匹配廢料來(lái)源(如熱電偶型號(hào)識(shí)別)。
在德國(guó)某汽車(chē)催化劑回收廠的應(yīng)用表明,LIBS系統(tǒng)使熔煉配料時(shí)間縮短60%,合金成分波動(dòng)范圍從±5%收窄至±1%,直接提升后續(xù)精煉效率。該技術(shù)正與區(qū)塊鏈結(jié)合,實(shí)現(xiàn)從廢料到再生金屬的全流程成分追溯。
鉑銠絲回收,電子廢棄物中的納米鉑銠回收
廢棄芯片中的納米鉑銠導(dǎo)線(線寬<10nm)需特殊處理:
低溫等離子體解離:在100°C下剝離環(huán)氧樹(shù)脂封裝層;
電泳富集:在pH=8的緩沖液中,施加20V/cm電場(chǎng),使納米顆粒遷移率提升5倍;
膜過(guò)濾純化:采用0.5nm氧化鋁膜分離不同粒徑顆粒。
臺(tái)積電(TSMC)測(cè)試顯示,該工藝對(duì)5nm制程芯片的鉑回收率達(dá)99.99%。
鉑銠絲回收,離心萃取技術(shù)分離鉑與銠
鉑銠分離是回收過(guò)程的難點(diǎn),傳統(tǒng)離子交換法周期長(zhǎng)(>48小時(shí))。中國(guó)恩菲工程公司開(kāi)發(fā)的三級(jí)離心萃取系統(tǒng)實(shí)現(xiàn)突破:
工藝流程:
王水溶解:將鉑銠合金溶于逆王水(HCl:HNO?=3:1),形成H?PtCl?和H?RhCl?;
初級(jí)萃取:使用二正辛基硫醚(DOS)在離心機(jī)(轉(zhuǎn)速3000rpm)中萃取鉑,單級(jí)萃取率>99%;
銠富集:剩余水相用TBP(磷酸三丁酯)萃取殘余鉑,銠留存水相;
反萃回收:NaOH溶液(2mol/L)反萃鉑,NH?Cl沉淀銠。
技術(shù)指標(biāo):
鉑銠分離系數(shù)(βPt/Rh)達(dá)10?,遠(yuǎn)超傳統(tǒng)工藝的103;
全過(guò)程耗時(shí)<4小時(shí),試劑消耗降低70%;
產(chǎn)品純度:鉑>99.95%,銠>99.9%。
該技術(shù)已應(yīng)用于江西銅業(yè)的鉑銠回收生產(chǎn)線,年處理能力200噸,使銠的回收成本從800美元/盎司降至350美元/盎司。2023年獲得中國(guó)有色金屬工業(yè)科學(xué)技術(shù)一等獎(jiǎng)。
鉑銠絲回收,等離子體熔煉技術(shù)回收納米鉑銠材料
納米級(jí)鉑銠催化劑(如汽車(chē)三元催化劑)的回收需特殊工藝。俄羅斯NUST MISIS大學(xué)開(kāi)發(fā)了氫等離子體熔煉法:
工藝參數(shù):
電弧等離子體溫度3000-5000K,通入H?/Ar混合氣(比例1:4);
納米顆粒在等離子體炬中瞬間熔化,形成微米級(jí)合金珠;
水冷銅坩堝收集熔滴,冷卻后獲得0.1-0.5mm的PtRh球狀顆粒。
技術(shù)優(yōu)勢(shì):
回收:對(duì)粒徑<100nm的顆?;厥章?99%,傳統(tǒng)熔煉法僅85%;
原位純化:H?還原作用可同步去除表面碳污染(如柴油車(chē)催化劑積碳);
直接合金化:通過(guò)調(diào)節(jié)等離子體組成,可直接制備PtRh10/PtRh20等標(biāo)準(zhǔn)合金。
該技術(shù)已在中試規(guī)模實(shí)現(xiàn)連續(xù)生產(chǎn)(50kg/h),能耗為常規(guī)電弧爐的60%。2023年測(cè)試數(shù)據(jù)顯示,回收的納米鉑銠重新負(fù)載于催化劑后,CO氧化活性達(dá)到新鮮催化劑的98%。
鉑銠絲回收,超臨界CO?萃取技術(shù)的新突破
英國(guó)諾丁漢大學(xué)將超臨界CO?(scCO?)與三氟乙酰丙酮(TFA)結(jié)合,實(shí)現(xiàn)鉑銠選擇性萃?。?br />
系統(tǒng)參數(shù):壓力25MPa,溫度60°C,CO?流速10L/min,TFA濃度0.1mol/L;
萃取效率:對(duì)Pt的分配比(D)達(dá)4500,Rh為1200,遠(yuǎn)常規(guī)溶劑萃?。―<100);
綠色優(yōu)勢(shì):全過(guò)程無(wú)酸性廢水,CO?可循環(huán)使用,萃取劑消耗量減少99%。
中試裝置(50L反應(yīng)釜)連續(xù)運(yùn)行數(shù)據(jù)顯示,每小時(shí)可處理20kg含鉑銠廢催化劑,金屬純度>99.9%。該技術(shù)入選2023年《Green Chemistry》年度工業(yè)技術(shù)。
鉑銠回收液的光化學(xué)還原技術(shù)
日本東京大學(xué)開(kāi)發(fā)UV光催化還原工藝處理含鉑銠廢水:
光催化劑:TiO?納米管陣列(孔徑10nm,禁帶寬度3.2eV);
反應(yīng)條件:
UV波長(zhǎng):365nm
溶液pH=3(0.1M甲酸作為空穴捕獲劑)
反應(yīng)時(shí)間:2小時(shí)
還原效率:
Pt??→Pt?轉(zhuǎn)化率:99.8%
Rh3?→Rh?轉(zhuǎn)化率:97.5%
該技術(shù)處理1m3廢水的電力消耗僅3.5kWh,且催化劑可重復(fù)使用100次以上活性不衰減。
12年
13818830356 410767792