這增加了其儲存的復雜性和風險成本問題:目前,氫能源的儲存和運輸成本相對較高。無論是高壓氣瓶、低溫儲罐還是固態(tài)儲氫材料,都需要特殊的設備和材料,這些都會增加成本。此外,儲存過程中可能需要的能耗也會進一步推高成本。
氫燃料的發(fā)熱值高達 142.351kJ/kg,是汽油發(fā)熱量的 3 倍 ,燃燒特性好,點燃快,與空氣混合時有廣泛的可燃性范圍,并且燃點高,燃燒速度更快。從能源轉(zhuǎn)化效率來看,氫燃料電池的能源轉(zhuǎn)化率能超過 60%,遠內(nèi)燃機 30% - 35% 的能源轉(zhuǎn)化率。這種的能源特性,使得氫燃料在眾多能源選項中脫穎而出。
此外,氫燃料還可以與可再生能源(如太陽能、風能)結合,解決可再生能源發(fā)電的間歇性和不穩(wěn)定性問題。在風能、太陽能發(fā)電充足時,利用多余的電能電解水制氫,將氫儲存起來;在能源需求高峰或可再生能源發(fā)電不足時,再通過氫燃料電池發(fā)電,實現(xiàn)能源的穩(wěn)定供應。
目前,氫燃料的生產(chǎn)、儲存和運輸成本都較高。制取氫氣的方法,如電解水制氫,需要消耗大量的電能,導致生產(chǎn)成本居高不下;而化石燃料制氫雖然成本相對較低,但會產(chǎn)生一定的碳排放,不符合可持續(xù)發(fā)展的要求。高壓儲存氫氣需要昂貴的設備,運輸過程中也需要特殊的管道或車輛,這進一步增加了氫燃料的成本。
隨著科技的不斷進步,新型材料的研發(fā)有望降低燃料電池的成本,提高其性能和壽命。例如,質(zhì)子交換膜燃料電池(PEMFC)中,新型質(zhì)子交換膜材料的研發(fā)可以提高電池的效率和耐久性;在儲氫技術方面,金屬氫化物儲氫、碳納米管儲氫等新型儲氫材料和技術的研究,為降低儲氫成本、提高儲氫安全性提供了可能。
在未來,我們或許將看到更多的氫燃料電池汽車行駛在道路上,加氫站如同加油站一樣遍布城市的各個角落;工業(yè)領域中,氫燃料將成為主流的能源供應方式,助力產(chǎn)業(yè)實現(xiàn)綠色轉(zhuǎn)型;電力系統(tǒng)中,氫燃料與可再生能源的深度融合,將構建起更加穩(wěn)定、清潔、智能的能源體系。