CompactRIO模塊
渦輪增壓器性能中重要的變量包含溫度、壓力和轉速。系統(tǒng)組件包含多個NI C系列模塊,包括NI 9217 RTD模擬輸入模塊測量電阻溫度傳感器(RTD)溫度、NI 9211熱電偶輸入模塊測量熱電偶溫度、NI 9203數(shù)據(jù)采集模塊測量壓力和電流、NI 9423漏極數(shù)字輸入模塊測量轉速。此外,還采用了NI 9265同步更新模擬輸出模塊作為系統(tǒng)和模擬輸出值的外部接口,NI 9425漏極數(shù)字輸入模塊和NI 9476源數(shù)字輸出模塊用于數(shù)字I/O值。檢測系統(tǒng)由系統(tǒng)操作員通過用戶界面進行控制。監(jiān)視外部系統(tǒng)使得用戶可以控制和管理整個系統(tǒng)。
結論
渦輪增壓器是車輛引擎的重要部分,其性能直接影響整個引擎的性能。對渦輪增壓器性能進行適當?shù)臏y試是確保終產(chǎn)品質量的關鍵步驟。以前的PLC系統(tǒng)無法提供所需的精度。使用基于CompactRIO的全新檢測系統(tǒng)替換PLC系統(tǒng)節(jié)省了空間,并且提供了更高的精度、更高的分辨率和更好的性能。此外,由于系統(tǒng)開發(fā)員熟悉CompactRIO的開發(fā)方法,可以在短時間內(nèi)讓系統(tǒng)開始運行,這樣節(jié)省了時間和開發(fā)資源。
使用LabVIEW FPGA和CompactRIO開發(fā)伺服控制系統(tǒng)
概述:利用NI LabVIEW FPGA 模塊和CompactRIO 系統(tǒng)開發(fā)出世界上臺在連續(xù)旋轉式磁盤上進行三維全息數(shù)字數(shù)據(jù)存儲的伺服控制系統(tǒng)。
全息數(shù)字數(shù)據(jù)存儲(Holographic digital data storage,簡稱HDDS)技術是光學存儲領域里有前景的新興技術之一。傳統(tǒng)的數(shù)據(jù)存儲技術,是把單的比特信息存儲為介質表面的磁或光變量,正在接近其物理的極限。然而,全息存儲技術可以使數(shù)據(jù)的傳輸速率加速到10 億比特每秒,把訪問時間降低到幾十微秒,同時將數(shù)據(jù)的存儲密度增加到理論的大值,即1 萬億比特每立方厘米?! ?br />
通過在存儲介質的整個三維空間上編碼數(shù)據(jù),并且利用稱為頁的大容量并行存儲塊來進行記錄和恢復,全息數(shù)據(jù)存儲技術突破了傳統(tǒng)二維技術(如DVD)的限制。
利用CompactRIO 對Daewoo HDDS 系統(tǒng)進行原型驗證
我們的H D D S 原型包括兩個主要的子系統(tǒng):一個基于N ICompactRIO三百萬門的FPGA 系列模塊的電光運動控制系統(tǒng)和一個基于Xilinx 公司八百萬門的FPGA 電路板的視頻解碼系統(tǒng)。CompactRIO 系統(tǒng)控制著一個線性電機、一個步進電機、一個電流鏡和一個CMOS 相機。每一個運動控制環(huán)都要求的控制,所以我們利用反饋信號來控制和檢測數(shù)據(jù)。不同于傳統(tǒng)的計算型電路板,CompactRIO 系統(tǒng)使我們可以利用NI 公司的LabVIEWFPGA模塊來定制脈沖發(fā)生器的時序,其精度可達到一個FPGA時鐘周期。為了避免滑動,我們通過創(chuàng)建定制的用于加速和減速的數(shù)學函數(shù),開發(fā)了復雜的電機控制算法。我們?yōu)槿N類型的電機分別設計了驅動電路,并把它們連接到CompactRIO 的輸入/ 輸出模塊上。除了運動控制,CompactRIO 還與用于視頻解碼的FPGA 電路板通信,該電路板是使用我們自有的用于視頻恢復和CMOS相機控制的信號處理技術開發(fā)的。前端MPEG解碼器積累在緩存中的數(shù)據(jù)量隨速度變化很大,CompactRIO 還通過檢查其變化來控制數(shù)據(jù)的傳輸速率。
每次進行EO 實驗,COP 明顯均集中在同一區(qū)域。但若進入EC 實驗,受測人員的COP 分布就會產(chǎn)生的變化。結果顯示,所有受測人員若要在不平衡的表面上達到平衡,將極度依賴自己生理上的本體感受器(Proprioceptor) 告知大腦目前狀態(tài),也解釋了COP 分配區(qū)域大幅增多的原因。
一項對EC 實驗的有趣觀察指出,若受測人員對生活形態(tài)抱持輕微的積極態(tài)度,則搖擺的程度較大;若對生活形態(tài)抱持適當?shù)姆e極態(tài)度,其搖擺程度亦較小。不同的生活形態(tài)亦反應出COP 的分配范圍。與適當積極態(tài)度的受測人員相較,較不積極的人其COP 分配范圍亦較大。
若受測人員已熟悉了Balance Trainer 動態(tài)平臺,亦將更能控制COP 的分配范圍,亦能進一步控制自己的本體感受器。在實際擷取資料之前,這些受測人員已經(jīng)實際使用動態(tài)平臺達7 天。
結論
總的來說,我們用LabVIEW 與DAQ 建構動態(tài)平圖,可了解人體在不穩(wěn)定表面上的平衡狀態(tài)。儀控式的動態(tài)平臺顯示了下列特性:
? 測得受測人員的姿勢控制與擺動情形若受測人員的COP分配范圍較大,也耗上更多力氣才能達到平衡
? 受測人員若對生活抱持積極的態(tài)度,也展現(xiàn)了較佳的姿勢控制能力
? 在切斷視覺之后,人體會立刻切換為本體感受器,通知身體是否在特定方向的擺動幅度過大
? 受測人員在熟悉了平臺之后,亦將縮小其COP分配范圍綜合以上結論,受測人員只要能控制自己的本體感受器,就越能在非平衡的表面上讓自己保持平衡。