絮凝的數(shù)學(xué)描述一般分為兩個(gè)立的過(guò)程:遷移和粘附。遷移過(guò)程產(chǎn)生顆粒的碰撞。遷移是由水中顆粒的速度差異引起。在折板絮凝池中,速度差異認(rèn)為是以下3種因素造成:(1)顆粒的布朗運(yùn)動(dòng)(異向絮凝中起主要作用;(2)紊流渦旋(同向絮凝);(3)顆粒間沉降速度的差異(差速絮凝)。粘附作用取決于和顆粒物本身表面性質(zhì)有關(guān)的瞬時(shí)作用力。
折板單元本身的水力特性對(duì)絮體顆粒碰撞的影響主要表現(xiàn)在:折板單元的造渦作用和連續(xù)均勻的單元設(shè)置改善了紊動(dòng)能耗的分布,從而提高了絮凝方式的數(shù)值,因此提高了絮凝效果。水流通過(guò)折板單元,在漸擴(kuò)段與漸縮段的作用下,可以形成對(duì)稱(chēng)渦旋及單側(cè)渦旋。波峰處水流邊界層的分離是產(chǎn)生渦旋的動(dòng)因。根據(jù)渦旋的擴(kuò)散性,會(huì)進(jìn)一步分解為小尺度的渦旋,直到與水流微團(tuán)相關(guān)的雷諾數(shù)低到不能再產(chǎn)生更小的渦旋為止。
眾多的水處理工作者均認(rèn)為:只有具有與顆粒尺寸相同數(shù)量級(jí)的渦旋才對(duì)碰撞有效,其它的不起作用。由于實(shí)際的絮體顆粒尺寸變化幅度是1-1000um,因此,有很大一段的渦旋起作用,不能?chē)?yán)格劃分大小渦旋的界限。紊動(dòng)的擴(kuò)散作用主要取決于大尺度的紊動(dòng)。大渦旋的尺度可以認(rèn)為與折板單元的尺度數(shù)量級(jí)相同。折板單元連續(xù)的縮放,使水流形成大量不同尺度的渦旋,促進(jìn)了水流內(nèi)部絮體顆粒間的相對(duì)運(yùn)動(dòng),增加了碰撞機(jī)會(huì),所以相對(duì)于隔板絮凝池,絮凝效果大大提高。
絮凝效果的好壞主要依據(jù)形成的礬花情況。實(shí)際生產(chǎn)中,絮凝的效果大都依據(jù)后續(xù)的沉淀出水濁度進(jìn)行評(píng)價(jià),但這已不是絮凝階段結(jié)果的直接反映,沉淀出水濁度還與沉淀效果有很大關(guān)系。另一方面,即使對(duì)絮凝效果進(jìn)行直接評(píng)價(jià),評(píng)價(jià)大多也只是停留在對(duì)礬花大小和密實(shí)與否的感官描述上,缺少可操作的量化評(píng)價(jià)標(biāo)準(zhǔn),這與當(dāng)前還比較缺乏相對(duì)合理的絮凝評(píng)價(jià)標(biāo)準(zhǔn)有關(guān) [3] 。
開(kāi)發(fā)新型、、安全的絮凝劑,深入研究絮凝基礎(chǔ)理論及其控制技術(shù),現(xiàn)已成為一門(mén)迅速發(fā)展的科學(xué)與技術(shù)。絮凝過(guò)程是一個(gè)復(fù)雜的動(dòng)態(tài)過(guò)程,盡管要地表達(dá)某一水質(zhì)、絮凝劑和水流流態(tài)特性因素對(duì)絮凝效果的影響還存在很大的困難,但隨著多學(xué)科技術(shù)集成度的提高以及實(shí)際應(yīng)用的需要,預(yù)計(jì)折板絮凝研究將在如下方面有所發(fā)展:
往復(fù)式絮凝池也稱(chēng)隔板絮凝池。為一般常規(guī)的水平或垂直式水力絮凝反應(yīng)池。即在流水渠中加裝了橫折或豎折檔板,使加藥混合后的水流形成近似于弦形彎曲。池內(nèi)擋板或隔板的間距的安置使水流的速度梯度位分布呈逐步遞減。底部還有一定的坡度以保持水深。此種形式的池可在相當(dāng)寬廣的流量范圍內(nèi)得到合理的成效。機(jī)械絮凝器相比,絮凝時(shí)間由于更為均勻的剪力場(chǎng),故而常只需要前者的一半。隔板可由各種建筑材料一般可由磚砌成或薄形鋼筋混凝土預(yù)制板構(gòu)成。
合理地選定和優(yōu)化混凝工藝,不僅會(huì)提高出水水質(zhì),還能達(dá)到節(jié)能、節(jié)藥及降低運(yùn)行費(fèi)用的目的。往復(fù)式隔板絮凝池是依靠水流在廊道間的往返流動(dòng),使顆粒碰撞聚集。實(shí)際運(yùn)行資料表明,有些絮凝池在運(yùn)行過(guò)程中絮凝效果不佳,致使后續(xù)工藝的出水水質(zhì)遠(yuǎn)低于設(shè)計(jì)水平。國(guó)內(nèi)外常用的方法是將CFD 模型應(yīng)用到絮凝過(guò)程中,并已經(jīng)證明CFD對(duì)絮凝模擬的實(shí)用有效性。通過(guò)絮凝動(dòng)力學(xué)的研究,得到了絮凝中重要參數(shù)速度梯度值(G值)隨時(shí)間的變化規(guī)律,并將CFD模型應(yīng)用到往復(fù)式隔板絮凝池的設(shè)計(jì)過(guò)程中,通過(guò)流體力學(xué)軟件FLUENT的數(shù)值模擬,得到了往復(fù)式隔板絮凝池內(nèi)部水流的狀態(tài)和內(nèi)部的流場(chǎng),并對(duì)模擬結(jié)果進(jìn)行了深入的分析,定性分析水流狀態(tài)對(duì)絮凝處理效果的影響。
好的絮凝效果不僅需要大量的顆粒碰撞,還需要控制顆粒進(jìn)行合理有效的碰撞,使顆粒聚集起來(lái)。速度梯度是絮凝過(guò)程中常用的控制動(dòng)力學(xué)因素。根據(jù)絮凝動(dòng)力學(xué)理論得知,絮凝過(guò)程中的速度梯度值是逐漸減小的;而且開(kāi)始時(shí)刻的速度梯度值要求能與混合階段銜接上,所以一般要求較大。這時(shí)的絮凝也要求接觸和碰撞,但是由微渦旋理論可知要求的水力半徑要適合于自身的直徑,才能發(fā)生有效碰撞。理論上,攪拌強(qiáng)度越大,速度梯度越大,相互接觸碰撞的機(jī)會(huì)越多。但攪拌強(qiáng)度大(G值大),水流的剪切力就大,松散的絮體受到水流剪切會(huì)二次斷開(kāi)成為小絮體。因此要求攪拌的強(qiáng)度(也就是速度梯度)隨著絮凝的進(jìn)行而逐漸變小。整個(gè)混凝的過(guò)程中,G值是遞減的。但是速度梯度遞減規(guī)律,國(guó)內(nèi)外的還沒(méi)有定論。
池的圓弧形轉(zhuǎn)彎渠道改變了矩形渠道轉(zhuǎn)彎處180°速度方向變化帶來(lái)的能耗,降低了能耗;同時(shí)圓弧形渠道處的水流方向是逐漸變化的,從而產(chǎn)生慣性離心力,進(jìn)而產(chǎn)生大量微渦旋,提高了絮凝效率 。