折板絮凝池的構(gòu)造是在池內(nèi)放置一定數(shù)量的平行折板或波紋板。主要運(yùn)用折板的縮放或轉(zhuǎn)彎造成的邊界層分離而產(chǎn)生的附壁紊流耗能方式,在絮凝池內(nèi)沿程保持橫向均勻,縱向分散地輸入微量而足夠的能量,有效地提高輸入能量利用率和混凝設(shè)備容積利用率,增加液流相對(duì)運(yùn)動(dòng),以縮短絮凝時(shí)間,提高絮凝體沉降性能。
折板單元本身的水力特性對(duì)絮體顆粒碰撞的影響主要表現(xiàn)在:折板單元的造渦作用和連續(xù)均勻的單元設(shè)置改善了紊動(dòng)能耗的分布,從而提高了絮凝方式的數(shù)值,因此提高了絮凝效果。水流通過(guò)折板單元,在漸擴(kuò)段與漸縮段的作用下,可以形成對(duì)稱渦旋及單側(cè)渦旋。波峰處水流邊界層的分離是產(chǎn)生渦旋的動(dòng)因。根據(jù)渦旋的擴(kuò)散性,會(huì)進(jìn)一步分解為小尺度的渦旋,直到與水流微團(tuán)相關(guān)的雷諾數(shù)低到不能再產(chǎn)生更小的渦旋為止。
折板絮凝池的設(shè)計(jì)主要控制參數(shù)是水流速度、水頭損失和絮凝時(shí)間,但建成后往往發(fā)現(xiàn)實(shí)際運(yùn)行參數(shù)與設(shè)計(jì)值相差甚遠(yuǎn)。以水頭損失的計(jì)算為例,設(shè)計(jì)手冊(cè)中,其計(jì)算采用的是明渠漸擴(kuò)和漸縮公式,有人通過(guò)研究發(fā)現(xiàn),豎流折板絮凝池水頭損失實(shí)測(cè)值與設(shè)計(jì)計(jì)算值相差較大,實(shí)測(cè)值明顯小于設(shè)計(jì)計(jì)算值。
加強(qiáng)絮凝控制設(shè)備研制及絮凝效果評(píng)價(jià)參數(shù)的制定。開(kāi)發(fā)研制新型可定量、實(shí)時(shí)測(cè)定絮凝過(guò)程水流動(dòng)力學(xué)參數(shù)和礬花多形態(tài)參數(shù)(如大小、密實(shí)度、沉降速率等),并參與水廠運(yùn)行控制的設(shè)備儀器;利用所開(kāi)發(fā)的新型設(shè)備儀器,評(píng)估判斷特性水體絮凝效果,研究制定新型實(shí)用的微觀與宏觀相結(jié)合的絮凝效果綜合評(píng)估參數(shù)。
往復(fù)式絮凝池也稱隔板絮凝池。為一般常規(guī)的水平或垂直式水力絮凝反應(yīng)池。即在流水渠中加裝了橫折或豎折檔板,使加藥混合后的水流形成近似于弦形彎曲。池內(nèi)擋板或隔板的間距的安置使水流的速度梯度位分布呈逐步遞減。底部還有一定的坡度以保持水深。此種形式的池可在相當(dāng)寬廣的流量范圍內(nèi)得到合理的成效。機(jī)械絮凝器相比,絮凝時(shí)間由于更為均勻的剪力場(chǎng),故而常只需要前者的一半。隔板可由各種建筑材料一般可由磚砌成或薄形鋼筋混凝土預(yù)制板構(gòu)成。
為使水流中的顆粒相互碰撞,就使其與水流產(chǎn)生相對(duì)運(yùn)動(dòng)。水中的顆粒與水流產(chǎn)生相對(duì)運(yùn)動(dòng)好的辦法是改變水流的速度。改變速度的方法有兩種:①改變水流速度時(shí)造成的慣性效應(yīng)來(lái)進(jìn)行凝聚;②改變水流方向。在湍流中充滿著大大小小的渦旋。其中大渦旋能夠使流體進(jìn)一步的摻混,使顆粒均勻擴(kuò)散于流體中;同時(shí)創(chuàng)造大量的小漩渦,并將能量輸出給小渦旋。而小渦旋的作用是促進(jìn)顆粒的碰撞,提高絮凝效率。微渦旋理論認(rèn)為:水中微渦旋尺度與礬花顆粒尺度相近時(shí)混凝反應(yīng)充分。而小渦旋的動(dòng)力學(xué)致因是慣性效應(yīng),特別是湍流渦旋的離心慣性效應(yīng),由此可見(jiàn)湍流中微小渦旋的離心慣性效應(yīng)是絮凝的重要?jiǎng)恿W(xué)致因。
好的絮凝效果不僅需要大量的顆粒碰撞,還需要控制顆粒進(jìn)行合理有效的碰撞,使顆粒聚集起來(lái)。速度梯度是絮凝過(guò)程中常用的控制動(dòng)力學(xué)因素。根據(jù)絮凝動(dòng)力學(xué)理論得知,絮凝過(guò)程中的速度梯度值是逐漸減小的;而且開(kāi)始時(shí)刻的速度梯度值要求能與混合階段銜接上,所以一般要求較大。這時(shí)的絮凝也要求接觸和碰撞,但是由微渦旋理論可知要求的水力半徑要適合于自身的直徑,才能發(fā)生有效碰撞。理論上,攪拌強(qiáng)度越大,速度梯度越大,相互接觸碰撞的機(jī)會(huì)越多。但攪拌強(qiáng)度大(G值大),水流的剪切力就大,松散的絮體受到水流剪切會(huì)二次斷開(kāi)成為小絮體。因此要求攪拌的強(qiáng)度(也就是速度梯度)隨著絮凝的進(jìn)行而逐漸變小。整個(gè)混凝的過(guò)程中,G值是遞減的。但是速度梯度遞減規(guī)律,國(guó)內(nèi)外的還沒(méi)有定論。
矩形往復(fù)式絮凝池中普遍存在死水區(qū),死水區(qū)的存在,不僅容易形成沉積物的堆積,而且嚴(yán)重阻礙了水流的運(yùn)動(dòng)。特別是在絮凝后期,水流速度逐漸減小時(shí),死水區(qū)對(duì)水流有越來(lái)越大的的負(fù)面影響。而圓弧形渠道,幾乎不存在死水區(qū),可以有效的消除死水區(qū)帶來(lái)的負(fù)面影響。且圓弧區(qū)的水流速度也比矩形渠道的分布均勻,有利于節(jié)約能耗。
池的圓弧形轉(zhuǎn)彎渠道改變了矩形渠道轉(zhuǎn)彎處180°速度方向變化帶來(lái)的能耗,降低了能耗;同時(shí)圓弧形渠道處的水流方向是逐漸變化的,從而產(chǎn)生慣性離心力,進(jìn)而產(chǎn)生大量微渦旋,提高了絮凝效率 。