折板絮凝池的構(gòu)造是在池內(nèi)放置一定數(shù)量的平行折板或波紋板。主要運(yùn)用折板的縮放或轉(zhuǎn)彎造成的邊界層分離而產(chǎn)生的附壁紊流耗能方式,在絮凝池內(nèi)沿程保持橫向均勻,縱向分散地輸入微量而足夠的能量,有效地提高輸入能量利用率和混凝設(shè)備容積利用率,增加液流相對(duì)運(yùn)動(dòng),以縮短絮凝時(shí)間,提高絮凝體沉降性能。
折板單元本身的水力特性對(duì)絮體顆粒碰撞的影響主要表現(xiàn)在:折板單元的造渦作用和連續(xù)均勻的單元設(shè)置改善了紊動(dòng)能耗的分布,從而提高了絮凝方式的數(shù)值,因此提高了絮凝效果。水流通過折板單元,在漸擴(kuò)段與漸縮段的作用下,可以形成對(duì)稱渦旋及單側(cè)渦旋。波峰處水流邊界層的分離是產(chǎn)生渦旋的動(dòng)因。根據(jù)渦旋的擴(kuò)散性,會(huì)進(jìn)一步分解為小尺度的渦旋,直到與水流微團(tuán)相關(guān)的雷諾數(shù)低到不能再產(chǎn)生更小的渦旋為止。
同時(shí),大尺度的渦旋從主流吸取動(dòng)能,在運(yùn)動(dòng)過程中傳遞給較小尺度的渦旋,這樣逐級(jí)傳遞,一直到微尺度的渦旋。在較大尺度的渦運(yùn)動(dòng)中,流體粘性幾乎不起作用,可忽略不計(jì),因而在動(dòng)能傳遞中幾乎沒有能耗;而在微尺度的渦旋運(yùn)動(dòng)中,流體粘性將起主要作用,傳送到這些低級(jí)渦旋的能量就會(huì)通過粘性作用轉(zhuǎn)化為熱能。水流中同時(shí)存在無數(shù)大大小小的渦旋,產(chǎn)生一系列的脈動(dòng)頻率,具有連續(xù)的頻譜。
以來,全國大部分地表水源受污染,水體中藻類等有機(jī)物含量明顯增多,常規(guī)混凝處理效果并不理想。絮凝強(qiáng)化時(shí),對(duì)因池體自身結(jié)構(gòu)缺陷等因素造成的混凝動(dòng)力不足、水力條件不當(dāng)?shù)葐栴}往往不夠重視。
開發(fā)新型、、安全的絮凝劑,深入研究絮凝基礎(chǔ)理論及其控制技術(shù),現(xiàn)已成為一門迅速發(fā)展的科學(xué)與技術(shù)。絮凝過程是一個(gè)復(fù)雜的動(dòng)態(tài)過程,盡管要地表達(dá)某一水質(zhì)、絮凝劑和水流流態(tài)特性因素對(duì)絮凝效果的影響還存在很大的困難,但隨著多學(xué)科技術(shù)集成度的提高以及實(shí)際應(yīng)用的需要,預(yù)計(jì)折板絮凝研究將在如下方面有所發(fā)展:
為使水流中的顆粒相互碰撞,就使其與水流產(chǎn)生相對(duì)運(yùn)動(dòng)。水中的顆粒與水流產(chǎn)生相對(duì)運(yùn)動(dòng)好的辦法是改變水流的速度。改變速度的方法有兩種:①改變水流速度時(shí)造成的慣性效應(yīng)來進(jìn)行凝聚;②改變水流方向。在湍流中充滿著大大小小的渦旋。其中大渦旋能夠使流體進(jìn)一步的摻混,使顆粒均勻擴(kuò)散于流體中;同時(shí)創(chuàng)造大量的小漩渦,并將能量輸出給小渦旋。而小渦旋的作用是促進(jìn)顆粒的碰撞,提高絮凝效率。微渦旋理論認(rèn)為:水中微渦旋尺度與礬花顆粒尺度相近時(shí)混凝反應(yīng)充分。而小渦旋的動(dòng)力學(xué)致因是慣性效應(yīng),特別是湍流渦旋的離心慣性效應(yīng),由此可見湍流中微小渦旋的離心慣性效應(yīng)是絮凝的重要?jiǎng)恿W(xué)致因。